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meso-Tetrakis(pentafluorophenyl)porphyrin reacts with propargyl alcohol to afford porphyrins substi-
tuted with one, two, three or four prop-2-yn-1-yloxy groups in the 4-position of the meso-aryl groups.
These new porphyrin derivatives react with a 6-azidoquinolone under ‘click-chemistry’ conditions to give
porphyrin–quinolone conjugates linked by 1,2,3-triazole units.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Since the discovery of nalidixic acid, the parent compound of
the quinolone antibiotics, the molecular structures of quinolones
have been extensively modified to improve their pharmacologi-
cal properties and pharmacokinetic profiles.1–4 Quinolones are
easily synthesized, have a broad antimicrobial spectrum, are or-
ally and parenterally active and, apart from a few exceptions, are
non-toxic compounds. Therefore, they are important agents
against microbial pathogens. Ciprofloxacin and levofloxacin,
two quinolones introduced in 1986 and 1993, respectively, are
the most successful (economically and clinically) of all the to-
tally synthetic antimicrobial drugs.1 Quinolones are also being
considered for the treatment of fungal and viral5 infections and
for cancer chemotherapy.6 The antimicrobial activity of the quin-
olone derivatives is due to the inhibition of DNA synthesis by
targeting two essential topoisomerases: DNA gyrase and topoiso-
merase IV.1

Porphyrin derivatives are also exhibiting several medicinal
applications, namely as photosensitizers in the photodynamic
therapy (PDT) of cancer diseases, in the treatment of age-related
macular degeneration, and in the diagnosis of neoplastic diseases.7

Porphyrins are also very effective against bacteria and viruses and
are currently being studied for the photodynamic inactivation of
pathogenic microorganisms.8,9 For example, porphyrins are highly
ll rights reserved.
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active against viral diseases such as herpes simplex viruses10 and
fungal infections.11

The emergence of antibiotic resistance among pathogenic bac-
teria has led to a major research effort to find alternative antibac-
terial therapeutics. In this context, the synthesis of molecules with
dual functions may be a good strategy for the discovery of new
drugs. Those molecules can be achieved by coupling entities con-
taining well-established pharmacological activities. Frequently,
the resulting dyad systems have improved biochemical character-
istics relatively to their components or even new biological proper-
ties.12 With this in mind, we have designed a synthetic route to
porphyrin–quinolone conjugates which involves the 1,3-dipolar
cycloaddition of an azidoquinolone to porphyrins bearing alkynyl
groups. It is expected that the new conjugates will display interest-
ing biological activities.

This Letter describes the synthesis of five novel porphyrin–
quinolone conjugates (5a–d) linked by 1,2,3-triazole units. Four
novel porphyrins bearing one to four prop-2-yn-1-yloxy groups
in the 4-position of the meso-aryl substituents (2a–d) were pre-
pared and their reaction with 6-azidoquinolone 4, under ‘click-
chemistry’ conditions, afforded the corresponding new porphy-
rin–triazole–quinolones 5a–d. Typically this type of reaction leads
to a mixture of isomeric 1,4- and 1,5-disubstituted 1,2,3-triazoles13

but the copper(I)-catalyzed variant affords selectively the 1,4-
disubstituted derivatives.14–16 This ‘click-chemistry’17 reaction is
especially interesting, since it can be conducted under mild condi-
tions, in various solvents, and generally affords high yields of the
expected triazoles.
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Table 1
Synthesis of triazoles 5a–d

Alkyne Azidoquinolone 4
(number of equiv)

Reaction time (h) Triazole 5
(isolated yields, %)

3a 2 8 93
3b + 3b0 4 48 88
3c 6 48 62
3d 8 72 53
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2. Results and discussion

For the synthesis of the new porphyrin derivatives we started
with the simple and symmetric meso-tetrakis(pentafluorophe-
nyl)porphyrin (1), easily obtained from pentafluorobenzaldehyde
and pyrrole under microwave irradiation.18 The reaction of por-
phyrin 1 with an excess (10 equiv.) of propargyl alcohol in DMSO,
in the presence of potassium carbonate, for 24 h at 80 �C, affords
the tetrasubstituted porphyrin 2d in 65% yield along with a mix-
ture of the di- and tri-substituted porphyrins 2b–c (Scheme 1).
These compounds were separated by column chromatography (sil-
ica gel) using chloroform/petroleum ether (1:3) as the eluent.19

The formation of the mono-substituted derivative 2a was opti-
mized to 86% yield by using an excess of porphyrin 1 relatively
to propargyl alcohol (3:1 molar equiv.). In this case, the reaction
was carried out at 50 �C for 4 h; minor amounts of disubstituted
products were also formed.

All porphyrin derivatives 2a–d were fully characterized by 1H
and 19F NMR and high resolution mass spectrometry. The 1H
NMR spectra of these compounds show typically two singlets at
d 5.23 and 2.82 ppm corresponding to the resonances of the –
OCH2– and –C„CH protons, respectively.

The formation of the porphyrin–quinolone conjugates involves
the 1,3-dipolar cycloaddition reaction of the propynyloxy groups
in derivatives 2a–d with the 6-azidoquinolone 420,21 under ‘click-
chemistry’ conditions, that is, using copper sulfate and ascorbic
acid as catalyst.15 However, since free-base porphyrins are metal-
lated by copper, it was necessary to prepare, previously, the zinc
complexes 3a–d. These complexes were obtained in quantitative
yields from the reaction of 2a–d with zinc acetate in a 2:1 mixture
of chloroform/methanol at 50 �C for 15 min.

The cycloaddition reactions were carried out in DMF, at 50 �C,
for 4–48 h, using 2 equiv. of 6-azidoquinolone 4 for each propynyl-
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Scheme 1. Reagents and conditions: (a) propargyl alcohol, K2CO3, DMSO, 50 �C or 80 �C
DMF, 50 �C, 8–72 h.
oxy group (Table 1).22 The cycloadducts were purified by prepara-
tive TLC. The isolated yields of the triazole derivatives are in the
range 53–93%, being the best result for the monotriazole deriva-
tive. Ditriazole derivatives were obtained in a global 88% yield as
a mixture of isomers 5b and 5b0, which could be separated by pre-
parative TLC. As expected, the slowest reaction, and the lowest
yield (53%), was for the formation of the tetratriazole derivative
5d.23

The structures of compounds 5a–d were confirmed by their
mass, 1H and 19F NMR spectra.24 Compound 5a was also character-
ized by 13C NMR. Typically, their 1H NMR spectra (in DMSO-d6)
show multiplets in the range of d 9.22–9.17 ppm corresponding
to the b-pyrrolic protons. The quinolone protons H-20 and H-50 ap-
pear as broad signals in the range of d 8.82–8.79 ppm, while the
proton of the triazole ring (H-500) appears as a singlet in the range
of d 9.48–9.47 ppm. This pattern is observed for all compounds 5a–
d. The ESI mass spectra of compounds 5a–c show the [M+Na]+ ion
while the spectrum of 5d shows the [M+2Na]2+ ion.

In conclusion, a versatile route to new porphyrin–triazole–quin-
olone derivatives 5a–d is described. It involves the nucleophilic
displacement of fluorine atoms in porphyrin 1 by reaction with
propargyl alcohol, metallation with zinc acetate, and reaction with
the 6-azidoquinolone 4 under ‘click-chemistry’ conditions. Further
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studies on the properties of these new porphyrin derivatives are
currently under investigation in our laboratories.
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